
Whetting Your Appetite:
Interacting with the Outside World

Brief Outline

• Interweb (urllib, urllib2, etree)

• Relational Databases (sqlite3)

• Email (email, smtplib)

• Science (at least my version of it)

#0

How Science Gets Done: I

#1

Professor XYZ
Supernova SN2012A looks very interesting

Brad,

Please arrange for further observations of SN2012A.

I am busy teaching / traveling / sitting on the beach.

Thanks,
Professor XYZ

P. S. - I’ll get to your recommendation letter as soon as I can.

How Science Gets Done: II

#2

• Write a python script do_science:

• Extract additional information about a
supernova from a webpage

• Select a random graduate student from
an sqlite database

• Email the graduate student to request the
observations

These modules provide access to any URL (uniform
resource locator), the most common URL scheme being

HTTP. (Others are HTTPS, FTP, FTPS, etc.)

The urllib module provides tools and functions for
high-level, but less modern, interactions.

The urllib2 module is more suited for complex
interactions, supporting basic and digest authentication,

redirections, cookies, and more.

urllib.openurl() is deprecated in favor of
urllib2.openurl()

urllib & urllib2

These modules provide access to any URL (uniform
resource locator), the most common URL scheme being

HTTP. (Others are HTTPS, FTP, FTPS, etc.)

The urllib module provides tools and functions for
high-level, but less modern, interactions.

The urllib2 module is more suited for complex
interactions, supporting basic and digest authentication,

redirections, cookies, and more.

urllib.openurl() is deprecated in favor of
urllib2.openurl()

urllib & urllib2

#3

A (Simple) Webpage to Parse

#4

HowTo Retrieve HTML

>>> import urllib2
>>> MYSNURL = "http://astro.berkeley.edu/~cenko/public/BootCamp/SNeInfo.html"
>>>
>>> flob = urllib2.urlopen(MYSNURL)
>>> s = flob.read()
>>> flob.close()

urlopen returns a file-like object, which can be
read like any other file. As a result, s stores the

HTML from the page in a (large) string

#5

http://astro.berkeley.edu/~cenko/public/BootCamp/SNeInfo.html
http://astro.berkeley.edu/~cenko/public/BootCamp/SNeInfo.html

ElementTree (lxml.etree)

#6

Element

Attributes: tag, text

Methods: parents, children, search

ElementTree provides a class that makes it extremely
convenient to handle XML (and thus HTML) files. Element

instances are used to represent each XML tag, with appropriate
hierarchical relationships, and can be accessed with list syntax.

ElementTree (lxml.etree)
html (root)

head body

h2 table

tr (#0) tr (#1)

td (#0) td (#1) td (#2)
#7

Parsing HTML with etree
>>> from lxml import etree
>>> s = flob.read()
>>> html = etree.HTML(s)
>>> rows = html.find('.//table')
>>> for row in rows:
... if (sn_name == row[0].text):
... coords = [row[1].text.replace(" ", ":"),
... row[2].text.replace(" ", ":")]
... host = row[3].text
... sntype = row[4].text
... return [host, coords, sntype]
...

HTML converts a string into an ElementTree object. find
identifies all the children of the first element named table. List-like

indexing operations allow you to access children of nodes.

#8

Relational Databases

Relational databases are an efficient (searchable)
way to store tabular data. Most people today use

some form of SQL (MySQL, PostGreSQL, etc.) #9

sqlite3 Overview

• Built-in SQL database access

• Database is stored as a file (or in RAM)

• Syntax similar to MySQLdb

• Not portable (machine-dependent)

#10

HowTo Create an sqlite
Database

>>> import sqlite3
>>> filename = "/Users/cenko/Talks/PythonBootCamp/appetite/astropeeps.sql"
>>> conn = sqlite3.connect(filename)
>>> c = conn.cursor()
>>> c.execute('''CREATE TABLE ASTROPEEPS (f_name text, l_name text,
... email text, status text)''')
>>> c.execute('''INSERT INTO ASTROPEEPS VALUES ("Josh", "Bloom",
... "jbloom@astro.berkeley.edu", "Faculty")''')
>>> c.execute('''INSERT INTO ASTROPEEPS VALUES ("Adam", "Morgan",
... "amorgan@astro.berkeley.edu", "Student")''')
[etc.]
>>> conn.commit()
>>> c.close()

SQL commands are contained within the execute
statement. Make sure to remember to commit the changes

to the database before closing.
#11

mailto:jbloom@astro.berkeley.edu
mailto:jbloom@astro.berkeley.edu
mailto:amorgan@astro.berkeley.edu
mailto:amorgan@astro.berkeley.edu

HowTo Query an sqlite
Database

>>> filename = "/Users/cenko/Talks/PythonBootCamp/appetite/astropeeps.sql"
>>> conn = sqlite3.connect(filename)
>>> c = conn.cursor()
>>> student = “Student”
>>>
>>> c.execute("SELECT f_name, l_name, email FROM ASTROPEEPS WHERE status" + \
 " = '%s' ORDER BY RANDOM() LIMIT 1" % student)
<sqlite3.Cursor object at 0x10232e730>
>>> row = c.fetchall()
>>> print row
[(u'Adam', u'Morgan', u'amorgan@astro.berkeley.edu')]
>>> conn.commit()
>>> c.close()
>>> return [row[0][0], row[0][1], row[0][2]]

#12

After execute, we need to perform a fetchall
in order to retrieve the result from the query.

mailto:amorgan@astro.berkeley.edu
mailto:amorgan@astro.berkeley.edu

HowTo Email: I

>>> from email.MIMEMultipart import MIMEMultipart
>>> from email.MIMEText import MIMEText
>>> import NothingToSeeHere # Email password stored in this (private) file
>>> import smtplib
>>>
>>> [address, f_name, l_name] = [“amorgan@astro.berkeley.edu”, “Adam”, “Morgan”]
>>> [sn_name, host, coords, sntype] =
... [“SN2012A”, “M31”, [“10:00:00.00”, “+31:00:00.0”], “Ic”]
>>> myemail = “bradcenko@gmail.com”
>>>
>>> msg = MIMEMultipart()
>>> msg["From"] = myemail
>>> msg["To"] = address

#13

Basic email functionalities are in the email and smtplib
modules. MIMEMultipart() will create a new

instance of a message.

mailto:amorgan@astro.berkeley.edu
mailto:amorgan@astro.berkeley.edu
mailto:bradcenko@gmail.com
mailto:bradcenko@gmail.com

HowTo Email: II
>>> msgstr = "Hi %s %s,\n\n" % (f_name, l_name)
>>> msgstr += "I just found out about %s, and it seems neat. " % sn_name
>>> if (host == None):
... msgstr += "The host galaxy is unknown. "
... else:
... msgstr += "The host galaxy is %s. " % host
...
>>> if (coords == None):
... msgstr += "I do not know the coordinates. "
... else:
... msgstr += "The location is: RA=%s; Dec=%s. " % (coords[0], coords[1])
...
>>> if (sntype == None):
... msgstr += "I do not know the type.\n\n"
... else:
... msgstr += "The type is %s.\n\n" % sntype
...
>>> msgstr += "Could you please arrange some new observations? "
>>> msgstr += "I am really busy drinking right now.\n\n"
>>> msgstr += "Thanks,\nBrad"
>>> msg.attach(MIMEText(msgstr))

#14

HowTo Email: III

>>> mailServer = smtplib.SMTP("smtp.gmail.com", 587)
>>> mailServer.starttls()
>>> mailServer.login(myemail, NothingToSeeHere.passwd)
>>>
>>> mailServer.sendmail(myemail, address, msg.as_string())
>>> mailServer.close()

#15

sendmail is a method of the mailServer object.

Putting it all together
>>> def do_science(sn_name, filename=ASTROPEEPSDB, url=MYSNURL,
... myemail="bradcenko@gmail.com"):

... # See if the department database exists. If not, create it.

... if not os.path.exists(filename):

... create_astro_table(filename=filename)

... # Select a random graduate student to do our bidding

... [f_name, l_name, address] =

... retrieve_random_gradstudent(filename=filename)

... # Find out some information about the supernova

... [host, coords, sntype] = retrieve_sn_info(sn_name, url=url)

... # Email the student

... email_student(address, f_name, l_name, sn_name, host, coords, sntype,

... myemail=myemail)

... print “I emailed %s %s at %s about %s.” %

... (f_name, l_name, address, sn_name)

... # Faculty job here I come!

... return

#16

mailto:bradcenko@gmail.com
mailto:bradcenko@gmail.com

Breakout Problem

• The arXiv (arXiv.org) is a pre-print repository for
a variety of fields in science / engineering. Write a
script to search through the new postings of one
particular field, returning a list of titles, authors and
abstracts that match a (provided) keyword.

• http://arxiv.org/astro-ph/new

Breakout Problem

>>> ARXIVURL = "http://arxiv.org/list/astro-ph/new"
>>> import bout_appetite
>>> matches = bout_appetite.search_arXiv("Cenko", url=ARXIVURL, printres=True)
Sorry, no matches were found!
>>> matches = bout_appetite.search_arXiv("polarization")
Title: Integrated Optical Polarization of Nearby Galaxies
Authors: Amy Jones, Lifan Wang, Kevin Krisciunas, Emily Freeland
Abstract: We performed an integrated optical polarization survey of 70 nearby
galaxies to study the relationship between linear polarization and galaxy
properties. To date this is the largest survey of its kind. The data were
collected at McDonald Observatory using the Imaging Grism Polarimeter on the
Otto Struve 2.1m telescope. Most of the galaxies did not have significant level
of linear polarization, where the bulk is <1%. A fraction of the galaxies showed
a loose correlation between the polarization and position angle of the galaxy,
indicating that dust scattering is the main source of optical polarization. The
unbarred spiral galaxies are consistent with the predicted relationship with
inclination from scattering models of ~sin^2i.

http://arxiv.org/list/astro-ph/new
http://arxiv.org/list/astro-ph/new

Breakout Hints

Hint: You will have to take a relatively close look at the source code for the arXiv page of
interest. Note that new papers are indicated by the tag <div class=”meta”>.

You can search for this tag with: html.findall(.//div[@class=”meta”])

>>> class Paper(object):
... def __init__(self, paper_etree):
... # Parse the element here
... self.title =
... def __str__(self):
... # Make the instance print out nicely here
...
>>> def search_arXiv(keyword, url=ARXIVURL, printres=True):
... # Grab HTML from website
... # Convert to element tree
... # Find parent elements for each paper
... # Create a paper object from these elements
... # Simple regular expression match
... # Print results if desired
... # return matches

